163 research outputs found

    Ionization processes in a local analogue of distant clumpy galaxies: VLT MUSE IFU spectroscopy and FORS deep images of the TDG NGC 5291N

    Full text link
    We present IFU observations with MUSE@VLT and deep imaging with FORS@VLT of a dwarf galaxy recently formed within the giant collisional HI ring surrounding NGC 5291. This TDG-like object has the characteristics of typical z=1-2 gas-rich spiral galaxies: a high gas fraction, a rather turbulent clumpy ISM, the absence of an old stellar population, a moderate metallicity and star formation efficiency. The MUSE spectra allow us to determine the physical conditions within the various complex substructures revealed by the deep optical images, and to scrutinize at unprecedented spatial resolution the ionization processes at play in this specific medium. Starburst age, extinction and metallicity maps of the TDG and surrounding regions were determined using the strong emission lines Hbeta, [OIII], [OI], [NII], Halpha and [SII] combined with empirical diagnostics. Discrimination between different ionization mechanisms was made using BPT--like diagrams and shock plus photoionization models. Globally, the physical conditions within the star--forming regions are homogeneous, with in particular an uniform half-solar oxygen abundance. At small scales, the derived extinction map shows narrow dust lanes. Regions with atypically strong [OI] emission line immediately surround the TDG. The [OI] / Halpha ratio cannot be easily accounted for by photoionization by young stars or shock models. At larger distances from the main star--forming clumps, a faint diffuse blue continuum emission is observed, both with the deep FORS images and MUSE data. It does not have a clear counterpart in the UV regime probed by GALEX. A stacked spectrum towards this region does not exhibit any emission line, excluding faint levels of star formation, nor stellar absorption lines that might have revealed the presence of old stars. Several hypotheses are discussed for the origin of these intriguing features.Comment: 13 pages, 15 figures, accepted for publication in A&

    p3d: a general data-reduction tool for fiber-fed integral-field spectrographs

    Full text link
    The reduction of integral-field spectrograph (IFS) data is demanding work. Many repetitive operations are required in order to convert raw data into, typically a large number of, spectra. This effort can be markedly simplified through the use of a tool or pipeline, which is designed to complete many of the repetitive operations without human interaction. Here we present our semi-automatic data-reduction tool p3d that is designed to be used with fiber-fed IFSs. Important components of p3d include a novel algorithm for automatic finding and tracing of spectra on the detector, and two methods of optimal spectrum extraction in addition to standard aperture extraction. p3d also provides tools to combine several images, perform wavelength calibration and flat field data. p3d is at the moment configured for four IFSs. In order to evaluate its performance we have tested the different components of the tool. For these tests we used both simulated and observational data. We demonstrate that for three of the IFSs a correction for so-called cross-talk due to overlapping spectra on the detector is required. Without such a correction spectra will be inaccurate, in particular if there is a significant intensity gradient across the object. Our tests showed that p3d is able to produce accurate results. p3d is a highly general and freely available tool. It is easily extended to include improved algorithms, new visualization tools and support for additional instruments. The program code can be downloaded from the p3d-project web site http://p3d.sourceforge.netComment: 18 pages, 15 figures, 3 tables, accepted for publication in A&

    Large Velocity Gradients in the Tidal Tails of the Interacting Galaxy AM 1353-272 ("The Dentist's Chair")

    Get PDF
    We present VLT observations of the interacting system AM 1353-272. Using the FORS2 instrument, we studied the kinematics of the ionized gas along its prominent tidal tails and discovered strikingly large velocity gradients associated with seven luminous tidal knots. These kinematical structures cannot be caused by streaming motion and most likely do not result from projection effects. More probably, instabilities in the tidal tails have lead to the formation of kinematically decoupled objects which could be the progenitors of self-gravitating Tidal Dwarf Galaxies.Comment: 3 color figures, to appear 10. Nov. 2002 in ApJ

    Mapping the inner regions of the polar disk galaxy NGC4650A with MUSE

    Get PDF
    [abridged] The polar disk galaxy NGC4650A was observed during the commissioning of the MUSE at the ESO VLT to obtain the first 2D map of the velocity and velocity dispersion for both stars and gas. The new MUSE data allow the analysis of the structure and kinematics towards the central regions of NGC4650A, where the two components co-exist. These regions were unexplored by the previous long-slit literature data available for this galaxy. The extended view of NGC~4650A given by the MUSE data is a galaxy made of two perpendicular disks that remain distinct and drive the kinematics right into the very centre of this object. In order to match this observed structure for NGC4650A, we constructed a multicomponent mass model made by the combined projection of two disks. By comparing the observations with the 2D kinematics derived from the model, we found that the modelled mass distribution in these two disks can, on average, account for the complex kinematics revealed by the MUSE data, also in the central regions of the galaxy where the two components coexist. This result is a strong constraint on the dynamics and formation history of this galaxy; it further supports the idea that polar disk galaxies like NGC~4650A were formed through the accretion of material that has different angular momentum.Comment: 14 pages, 10 figures; accepted for publication in Astronomy & Astrophysic

    Three-component modelling of O-rich AGB star winds I. Effects of drift using forsterite

    Full text link
    Stellar winds of cool and pulsating asymptotic giant branch (AGB) stars enrich the interstellar medium with large amounts of processed elements and various types of dust. We present the first study on the influence of gas-to-dust drift on ab initio simulations of stellar winds of M-type stars driven by radiation pressure on forsterite particles. Our study is based on our radiation hydrodynamic model code T-800 that includes frequency-dependent radiative transfer, dust extinction based on Mie scattering, grain growth and ablation, gas-to-dust drift using one mean grain size, a piston that simulates stellar pulsations, and an accurate high spatial resolution numerical scheme. To enable this study, we calculated new gas opacities based on the ExoMol database, and we extended the model code to handle the formation of minerals that may form in M-type stars. We determine the effects of drift by comparing drift models to our new and extant non-drift models. Three out of four new drift models show high drift velocities, 87-310 km/s. Our new drift model mass-loss rates are 1.7-13 per cent of the corresponding values of our non-drift models, but compared to the results of two extant non-drift models that use the same stellar parameters, these same values are 0.33-1.5 per cent. Meanwhile, a comparison of other properties such as the expansion velocity and grain size show similar values. Our results, which are based on single-component forsterite particles, show that the inclusion of gas-to-drift is of fundamental importance in stellar wind models driven by such transparent grains. Assuming that the drift velocity is insignificant, properties such as the mass-loss rate may be off from more realistic values by a factor of 50 or more.Comment: 15 pages, 6 figures, accepted and in pres

    Candidate Tidal Dwarf Galaxies in the Compact Group CG J1720-67.8

    Get PDF
    This is the second part of a detailed study of the ultracompact group CG J1720-67.8: in the first part we have focused the attention on the three main galaxies of the group and we have identified a number of candidate tidal dwarf galaxies (TDGs). Here we concentrate on these candidate TDGs. Absolute photometry of these objects in BVRJHKs bands confirms their relatively blue colors, as we already expected from the inspection of optical and near-infrared color maps and from the presence of emission-lines in the optical spectra. The physical conditions in such candidate TDGs are investigated through the application of photoionization models, while the optical colors are compared with grids of spectrophotometric evolutionary synthesis models from the literature. Although from our data self-gravitation cannot be proved for these objects, their general properties are consistent with those of other TDG candidates. Additionally we present the photometry of a few ``knots'' detected in the immediate surroundings of CG J1720-67.8 and consider the possibility that these objects might belong to a dwarf population associated with the compact group.Comment: Accepted for publication in the Astrophysical Journa
    corecore